

Class 9 Science Chapter 7: Motion (Detailed Notes with Practice Questions and Numericals)

1. Introduction to Motion

- Motion: Change in the position of an object with respect to a reference point.
 - Examples: A bird flying in the sky, a car moving on a road, planets revolving around the sun.

Practice Questions:

- Define motion. Provide two real-life examples.
- Can an object appear to be in motion to one person and at rest to another? Explain with an example.
- Explain how you can infer the motion of air without seeing it.

2. Types of Motion

- Uniform Motion: An object covers equal distances in equal intervals of time.
 - Example: A car moving at a constant speed of 60 km/h.
 - Graph: A straight line in the distance-time graph.
- Non-Uniform Motion: An object covers unequal distances in equal intervals of time.
 - Example: A car slowing down or speeding up in traffic.
 - Graph: A curved line in the distance-time graph.

Practice Questions:

- Differentiate between uniform and non-uniform motion with examples.
- 2. Sketch a distance-time graph for both uniform and non-uniform motion.
- A bus covers 40 km in the first hour and 60 km in the second hour. Is this motion uniform or nonuniform? Justify.

3. Distance and Displacement

- Distance: Total path covered by an object, irrespective of direction.
 - Example: If a person walks 4 km east and then 3 km west, the distance is 7 km.
- · Displacement: Shortest distance between the initial and final position, considering direction.
 - Example: If a person walks 4 km east and then 3 km west, the displacement is 1 km east.

Practice Questions:

- Can displacement be zero even if distance is non-zero? Give an example.
- 2. A farmer walks around the boundary of a square field of side 100 m. What is his displacement after completing one round?
- 3. Is displacement always less than or equal to the distance? Explain with an example.

Numerical Problems:

- A cyclist rides 5 km east, then 3 km north, and finally 2 km west. Calculate the total distance traveled and the displacement.
- A car moves 100 m east, 50 m north, and 100 m west. Calculate its total distance and displacement.

4. Speed, Velocity, and Average Speed

Speed: The rate at which an object covers distance. Formula:

$$Speed = \frac{Distance}{Time}$$

- SI Unit: m/s or km/h.
- Velocity: Speed with direction. Velocity is a vector quantity.
 - Example: A car moving at 60 km/h towards the north.

- · Average Speed: The total distance covered divided by the total time taken.
 - · Formula:

$$Average \ Speed = \frac{Total \ Distance}{Total \ Time}$$

Practice Questions:

- 1. A car covers 100 km in 2 hours. What is its speed?
- A person travels 40 km east in 2 hours and then 20 km west in 1 hour. Find the average speed and average velocity.
- 3. Explain the difference between speed and velocity with examples.

Numerical Problems:

- A car travels 120 km in 3 hours and another 60 km in 2 hours. Calculate the average speed of the car.
- 2. A man walks 5 km in 1 hour and another 10 km in 2 hours. What is his average speed?

5. Acceleration

Acceleration: The rate of change of velocity per unit time.
 Formula:

$$a = \frac{v - u}{t}$$

Where:

- a = acceleration,
- v = final velocity,
- u = initial velocity,
- t = time.
- SI Unit: m/s².

Practice Questions:

- A car accelerates from 0 to 30 m/s in 10 seconds. Calculate its acceleration.
- A bike reduces its speed from 20 m/s to 5 m/s in 5 seconds. What is its acceleration?
- 3. Define uniform and non-uniform acceleration with examples.

Numerical Problems:

- A car accelerates uniformly from 10 m/s to 30 m/s in 5 seconds. Calculate the acceleration and the distance covered during this time.
- 2. A train starts from rest and accelerates uniformly at 2 m/s². How much distance will it cover in 10 seconds?

6. Graphical Representation of Motion

- Distance-Time Graph: Shows the distance covered by an object over time.
 - · For uniform motion: The graph is a straight line.
 - For non-uniform motion: The graph is a curve.
- Velocity-Time Graph: Shows the velocity of an object over time.
 - For uniform velocity: The graph is a straight line parallel to the time axis.
 - For accelerated motion: The graph is a sloped line.

Practice Questions:

- Sketch a distance-time graph for a car moving with uniform speed.
- What information can you get from a velocity-time graph?
- 3. How can you calculate the displacement of an object from a velocity-time graph?

Numerical Problems:

- A car starts from rest and accelerates uniformly to a velocity of 20 m/s in 10 seconds. Sketch its velocity-time graph and calculate the distance covered.
- A cyclist starts from rest and reaches a speed of 10 m/s in 5 seconds. Plot the velocity-time graph and find the acceleration.

7. Equations of Motion

The equations of motion for uniformly accelerated motion are:

1.
$$v = u + at$$

2.
$$s=ut+rac{1}{2}at^2$$

3.
$$v^2 = u^2 + 2as$$

Where:

- u = initial velocity,
- v = final velocity,
- a = acceleration,
- t = time,
- s = displacement.

Practice Questions:

- A car starts from rest and reaches a speed of 20 m/s in 5 seconds. Find the acceleration and the distance covered.
- A ball is thrown upwards with an initial velocity of 15 m/s. Calculate the time it takes to reach its highest point.

Numerical Problems:

- A motorbike accelerates from rest to a velocity of 30 m/s in 10 seconds. Calculate the acceleration and the distance traveled.
- A car moving with an initial velocity of 15 m/s accelerates uniformly at 3 m/s² for 6 seconds.
 Find its final velocity and the distance covered.

8. Uniform Circular Motion

- Uniform Circular Motion: Motion along a circular path with constant speed. Although the speed remains constant, the direction of motion changes continuously, leading to acceleration.
- · Formula for speed in circular motion:

$$v=rac{2\pi r}{T}$$

Where:

- v = speed,
- r = radius of the circular path,
- T = time period for one complete revolution.

Practice Questions:

- 1. Explain how an object moving in a circular path is accelerating even if its speed is constant.
- Calculate the speed of an object moving in a circular path of radius 5 m, taking 10 seconds to complete one revolution.
- 3. Give two examples of uniform circular motion.

Numerical Problems:

- An object moves in a circular path of radius 7 m and takes 14 seconds to complete one revolution. Calculate its speed.
- A cyclist takes 20 seconds to complete one round of a circular track with a radius of 35 m. Find the speed of the cyclist.

Important Formulas

1. Speed:

$$Speed = \frac{Distance}{Time}$$

2. Velocity:

$$Velocity = \frac{Displacement}{Time}$$

3. Acceleration:

$$a = \frac{v - u}{t}$$

4. Average Speed:

$$Average \ Speed = \frac{Total \ Distance}{Total \ Time}$$

5. Equations of Motion:

$$v=u+at,\quad s=ut+rac{1}{2}at^2,\quad v^2=u^2+2as$$

6. Uniform Circular Motion:

$$v = rac{2\pi r}{T}$$

